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Figure 1. Structure of (+)-NPS R
A practical and efficient procedure for the synthesis of a potent calcimimetic (+)-NPS R-568 was devel-
oped. This procedure includes as the key step the asymmetric reductive acylation of a ketoxime interme-
diate catalyzed by a Pd nanocatalyst and a lipase in combination. The target compound was prepared
from commercially available 30-methoxyacetophenone via five steps in overall 63% yield.

� 2010 Elsevier Ltd. All rights reserved.
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NPS R-568 (1, Fig. 1) has a great potential as a novel type of
calcimimetics for the treatment of primary and secondary hyper-
parathyroidism.1 The clinical studies have shown that the R enan-
tiomer of 1 is 10–100 times more potent than the (S)-1. Several
procedures for the enantioselective synthesis of optically active 1
have been developed.2 In these procedures, the chiral center of 1
was constructed via diastereoselective addition of Grignard or
organolithium reagents to imines bearing a chiral auxiliary2a–c or
asymmetric hydrosilylation of imine.2d In this Letter, we wish to
report an alternative route to 1, including the asymmetric reduc-
tive acylation of a ketoxime intermediate as the key step for intro-
ducing the required chiral center.

The synthesis of 1 started from ketone 2, which was first con-
verted quantitatively by the reaction with hydroxyl amine to ket-
oxime 33 (Scheme 1). The ketoxime 3 was then subjected to the
asymmetric reductive acylation catalyzed by a lipase–Pd couple4

to introduce the R-chirality. The process comprises three sequen-
tial reactions taking place in one-pot: Pd-catalyzed reduction of
ketoximes to amines, Pd-catalyzed racemization of amines, and li-
pase-catalyzed enantioselective acylation of amines to amides
(Scheme 2). The last two reactions constitute the dynamic kinetic
resolution of primary amimes.5 Pd/AlO(OH)6 (palladium nanoparti-
cles entrapped in aluminum oxyhydroxide matrix) and Candida
antarctica lipase B (CALB; trade name, Novozym 435; immobilized
on acrylic resin) were employed as the corresponding catalysts for
ll rights reserved.
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the process. In a small-scale procedure, the asymmetric reductive
acylation of 3 (0.3 mmol) was performed with CALB (30 mg/mmol
of substrate) and Pd/AlO(OH) (5 mol % of Pd) in the presence of
ethyl methoxyacetate7 (1.7 equiv) as an acyl donor and 4 Å molec-
ular sieves (500 mg/mmol of substrate) in toluene at 70 �C under
0.1 bar of hydrogen pressure for 48 h to give 4 in 91% isolated yield
and 98% ee. The reaction was repeated four times with recovered
catalysts, and the yield and ee value of 4 remained practically un-
changed up to the 4th recycle8 (Table 1). These results indicate that
the catalysts are thermally stable and can be recycled several times
with no significant loss in catalytic efficiency.9 The reaction was
also readily scalable. The reaction performed on a larger scale
6

HN
MeO

v)

1

Scheme 1. Synthesis of (+)-NPS R-568 hydrochloride (1). Reaction conditions: (i)
NH2OH�HCl, py, quantitative yield; (ii) CALB, Pd/AlO(OH), CH3OCH2CO2Et, H2

(0.1 bar), 4 Å molecular sieves, toluene, 70 �C, 3 days, 85%, 98% ee; (iii) 3 N HCl in
H2O, 80 �C, 16 h, 94%, 96% ee; (iv) 3-(2-chlorophenyl)-propionic acid (1 equiv), EDCI
(1.1 equiv), dry CH2Cl2, rt, 12 h, 93%; (v) LiAlH4 (1 equiv), dry Et2O, rt, 30 h, and then
1 N HCl in H2O, 85%.

http://dx.doi.org/10.1016/j.tetlet.2010.04.121
mailto:mjkim@postech.ac.kr
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


NOH

Ar

NH2

Ar

NH2

Ar

HN

Ar

Lipase
O

OPd

(R)

(S)

(R)

H2(g)

Pd

CH3OCH2CO2Et

Scheme 2. Asymmetric reductive acylation of ketoximes catalyzed by a lipase–
palladium couple.

Table 1
Asymmetric reductive acylation of 3 with recycling of catalysts

# of recycling Yielda (%) eeb (%)

0 91 98
1 88 98
2 89 98
3 89 98
4 90 98

a Isolated yield.
b Measured by HPLC with a chiral column.
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(6 mmol) proceeded smoothly and provided similarly good results
(85% isolated yield and 98% ee).10

Chiral amide 4 was then hydrolyzed under acidic condition (3 N
HCl) at 80 �C for 16 h to give chiral amine 5 with a little loss in
enantiomeric excess (94% isolated yield, 96% ee).11 The conversion
of 5 to 1 was achieved by modifying the known procedure.2b,c The
coupling of 5 with 3-(2-chlorophenyl)propionic acid12 in the pres-
ence of N-ethyl-N0-(3-dimethylaminopropyl)carbodiimide (EDCI)
afforded amide 6 in 93% yield.13,14 Finally, amide 6 was reduced
with LiAlH4 to give the target molecule15 which was isolated as
its hydrochloride salt (85% yield) after the treatment with HCl.

We thus accomplished the asymmetric synthesis of the potent
calcimimetic (+)-NPS R-568 via five steps from commercially avail-
able 30-methoxyacetophenone in 63% overall yield. This procedure
is highlighted by asymmetric reductive acylation of ketoxime as
the key step which is cocatalyzed by a lipase and a Pd nanocatalyst
with good yield and excellent ee. An advantage of this process is
that the catalysts employed are thermally stable and recyclable.
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